Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6265, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490998

RESUMEN

The genus Melia is known for its secondary metabolites and recently, this genus is being explored for its timber. There are vast differences among its species. For instance, Melia azedarach is reported to be invasive and while another species, M. dubia, has diverse utility with complex germination and regeneration characteristics. Researchers globally have been working on various aspects of this genus; In this study, using topic modelling and science mapping approach, we attempted to understand research facets on this genus. The literature corpus of the Web of Science database was explored using a single keyword-"Melia" which yielded 1523 publications (1946-2022) and after scrutiny metadata of 1263 publications were used in the study. Although nine individual species were cited in the publications, only three species are accepted viz., M. dubia, M. azedarach, and M. volkensii. This implies taxonomic uncertainty, with potential confusion in assigning scientific findings to particular species. Thus, a taxonomic relook on this genus is warranted for a better assessment of the economic utility in many countries. More importantly, our results indicate that the research interests have recently shifted from the secondary metabolite constituents towards growth, biomass, wood properties, germination, plantation, and green synthesis. The shift in research focus toward wood properties of Melia sp. can impact the wood demand-supply at a global scale owing to its fast growth and the possibility of cultivation over a wider geographical range.


Asunto(s)
Melia azedarach , Melia , Madera , Biomasa
2.
Viruses ; 13(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807625

RESUMEN

Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.


Asunto(s)
Productos Agrícolas/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Reacción en Cadena de la Polimerasa/métodos , Virosis/virología
3.
PLoS One ; 14(7): e0219014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31269087

RESUMEN

Biotic stresses in plants have a significant impact on agricultural productivity. In the present study, in vivo experiments were conducted to determine the physiological responses of tomato (Solanum lycopersicum L.) seedlings by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus isolate BPSAC147 under greenhouse conditions. Further, photochemical quantum yield of photosystem II (PSII) (Fv/Fm), photochemical quenching (qP) and non-photochemical (NPQ) were calculated in seedlings inoculated with S. thermocarboxydus (T1) and were compared with control (T0) plants. Furthermore, the electron transport rate (ETR) of PSII exhibited a significant increase in T1 plants, relative to T0 plants. These results indicate that inoculation of tomato seedlings with S. thermocarboxydus had a positive effect on the process of photosynthesis, resulting in enhanced chlorophyll fluorescence parameters due to increased ETR in the thylakoid membrane. GC-MS analysis showed significant differences in the volatile compounds in the different treatments performed under greenhouse conditions. The present study suggests that S. thermocarboxydus can be used as new biocontrol agent to control Fusarium wilt in tomato crops and enhance productivity by enhancing photosynthesis.


Asunto(s)
Endófitos/fisiología , Solanum lycopersicum/microbiología , Streptomyces/fisiología , Agentes de Control Biológico , Clorofila/metabolismo , Resistencia a la Enfermedad , Transporte de Electrón , Endófitos/clasificación , Endófitos/genética , Fusarium/patogenicidad , Germinación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Fotosíntesis , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Streptomyces/clasificación , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...